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The Dyson ideal spin-wave Hamiltonian for the two-sublattice Heisenberg antiferromagent is obtained
using a Maleev transformation. A spin-phonon interaction Hamiltonian is derived by expanding the lattice
coordinates in small displacements and retaining the linear terms. The static and dynamic properties of
the system containing the spin field and the harmonic phonon field are studied using the double-time Green’s-
function method. This is done in a self-consistent manner, using symmetrized equations of motion, from
which a Dyson equation is derived. It is found that if the zeroth-order Hamiltonian describing the Dyson
equation contains contributions from the interacting ideal spin waves, the polarization operator is no longer
simple. A zeroth-order approximation which contains all the static contributions arising from the interacting
ideal spin waves is constructed. Contact is made with the work of previous authors and some aspects of
the Callen decoupling procedure are clarified. Using an effective Hamiltonian and a canonical-transformation
technique, expressions for the full polarization operator are developed. Finally, expressions for the frequency-
dependent susceptibility are obtained and these are used to discuss the line shape for the absorption of
energy from an oscillating field at frequencies near and far from resonance.

1. INTRODUCTION

WING to the large number of studies on the
Heisenberg ferromagnet,® it could at least be said

that the behavior of this system far away from the
critical region is well understood. Out of all the methods
available for the study of this system, perhaps the most
powerful and systematic approach is via the Green’s-
function technique. But most of the studies on the
Heisenberg ferromagnet, and the parallel treatments of
the antiferromagnet, have been devoted to a study of
their static properties and how these could be more
correctly approximated with the aid of improved
techniques for decoupling the chain of Green’s functions.
In a well-known study of the Heisenberg ferro-
magnet, Dyson? has investigated the deviations from
simple spin-wave theory and shown that, at least at low
temperatures, it is possible to use a non-Hermitian
effective-boson Hamiltonian (e.b.H.), the so-called
Dyson ideal spin-wave Hamiltonian, to discuss the
properties of the system. This depended on his proof
that the kinematical interactions are negligible in com-
parison to the dynamical interactions. The Dyson ideal
spin-wave Hamiltonian can be directly obtained from
the spin Hamiltonian using a transformation due to
Maleev. This procedure was used by Tahir-Kheli and
Ter Haar® in a study of the Heisenberg ferromagnet
using the method of Green’s functions. They succeeded
in obtaining Dyson’s results and also obtained expres-
sions for the magnon lifetimes, but had to resort to a

*Issued as National Research Council of Canada Report
No. 10938.

T N.R.C.C. post-doctoral fellow, 1967-1968. Present address:
University of Vidyodaya, Colombo, Ceylon; summer address:
National Research Council of Canada, Ottawa 2, Canada.

1S. V. Tyablikov, Methods in the Quanium Theory of M agnetism
(Plenum Press, Inc., New York, 1967), Chap. VII; H. B. Callen,
Physics of Many-Particle Systems (Gordon and Breach, Science
Publishers, Inc., New York, 1966), Vol. 1, Chap. 3; T. Zittartz,
Z. Physik 184, 506 (1965).

2 F. J. Dyson, Phys. Rev. 102, 1230 (1956).

;6%) A. Tahir-Kheli and D. Ter Haar, Phys. Rev. 127, 95
( .

1

somewhat tortuous decoupling procedure. If a more
clear-cut approach to the decoupling problem could be
had, the use of the ideal spin-wave Hamiltonian affords
a very convenient approach to the study of static and
dynamical properties of the Heisenberg ferromagnet, at
least in the low-temperature region.

In the present study a clearer approach to the de-
coupling problem will be presented using a “sym-
metrized” development of the equations of motion of
the spin operators. The method is applied to the case
of a spin-uncompensated two-sublattice antiferro-
magnet whose static and dynamical properties are
studied. The main advantage of the mathematical
formalism is brought out by showing how additional
interacting fields, for example, the phonon field, could
be incorporated in a general manner.

In Sec. 2 of this study the Hamiltonian of the system
is discussed and, using a suitable Maleev transforma-
tion, the non-Hermitian e.b.H. is obtained. That part
of the Hamiltonian which results from a simple
Holstein-Primakoff approximation is used to derive a
spin-phonon interaction Hamiltonian. For this purpose
the phonon field is taken to be that of a harmonic
crystal and, in developing the interaction term, only
linear terms in the lattice displacements are retained.

In Sec. 3 a matrix form of the double-time Green’s
functions is defined and their equations of motion are
derived with respect to both time arguments. This
procedure* enables us to express the equations for the
Green’s functions in the form of 'a Dyson equation. In
deriving the Dyson equation, unless the zeroth Green’s
functions are defined in terms of a noninteracting ideal
spin-wave Hamiltonian, the polarization operator is
found to have a complicated structure.

In Sec. 4 a “renormalized” zeroth-order approxima-
tion is derived. This approximation is adequate to
discuss all the static effects arising from the scattering
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1 SPIN-SPIN AND SPIN-PHONON

of spin waves as described by the e.b.H. In this section
expressions are derived for the excitation energies, sub-
lattice magnetizations, and the average energy of the
system in this approximation. Contact is established
with the results of Hewson and Ter Haar,® Anderson
and Callen,’ Lee and Liu,” and P’u Fu-Cho,? by taking
suitable limits. Of the two possible ways of applying
Callen’s decoupling procedure (CD) to antiferro-
magnetism, Callen has shown that only one leads to
satisfactory results. This choice is indeed found to be
necessary in CD if the results are to agree with those
obtained here, using the ideal spin-wave Hamiltonian.
No attempt is made to discuss critical phenomena since
the existing methods are, in our view, only of qualitative
validity near the Néel temperature.

In Sec. 5 the method of evaluating the polarization
operator is outlined. The details are presented in an
appendix. Using a canonical transformation which
diagonalizes the zeroth approximation, expressions are
developed for the polarization operator in a self-
consistent manner. In evaluating the contribution of
the spin-phonon interaction to the polarization opera-
tor, it becomes necessary to decouple certain mixed
Green’s functions for which a clear-cut random-phase
approximation becomes manifest. The expressions for
the polarization operator are compared with those due
to Kashcheev.?

In Sec. 6 the frequency-dependent susceptibility of
the system is considered with and without the phonon
field. Expressions for the line shape are obtained both
in regions of frequency near and far from resonance.
Finally, in the conclusion we have emphasized that the
mathematical formalism has clear advantages, especially
when a number of interacting fields have to be treated.

2. HAMILTONIAN OF SYSTEM
A. Spin-Spin Interaction

We assume that the crystal is composed of two
equivalent cubic lattices interpenetrating each other,
and that the nearest neighbors of the first lattice are on
the second lattice. For simplicity, we consider only the
exchange interaction J;, between atoms f and g, which
are on the two sublattices 1 and 2, respectively: Inter-
actions of the type J,;» and J,,» will be disregarded for
simplicity. The Hamiltonian of the spin subsystem is
taken to be

H3=; ]fanSa”*‘AfySfZSaz_MB(zf: SF+287, (D
N g

where the f and g summations are over the first and
second sublattices, respectively. Ay, is an anisotropic
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constant along the z direction and adds an Ising-like
contribution to the Hamiltonian. B is an external
magnetic field along the z direction, and u is a numerical
factor containing the Landé factor associated with the
spins .Sy and S,. J;, and A, are positive and depend
only on the distance between the lattice points f and g.
We now introduce the following transformations.
Lattice 1:

S/ =(25 )1/2< afTafaf>
=(2 ap—
d ' ! 28 ’

1

(2a)
Sy =(25)" %",
Sp=S1—aslay,

Lattice 2:
B,'8,'84
5.+ =25 81— )
AY)
(2b)

S =(252)""8,,
ng—': —S2+69V30 .

S1 and S» are the intrinsic spins associated with the
atoms of the lattices 1 and 2, respectively. Each lattice
contains V atoms. In Eq. (2) we have assumed a system
of units where %= 1. The operators oy, ;' (and 8, 8,
satisfy boson commutation rules, while all a; operators
commute with operators derived from g,.

From (1) and (2) the Hamiltonian (1) can be written
as

o = H p’l‘+H may

where

Hp=—uBN(S1—S3) —;g (1944 15)S1Ss
+j€ (S152)*(as1B,T+asB,)
+; {uB+§ (JrotAs0)S2}arlay
+Zg: [——#B-F; (V14705118484

—fZ (]fu'f‘A/g)afTafﬁgTBa: (3)

S\ 1/2
Hpa= —'% Z qu[:<_> affﬁywawa
/.9 S

2 SZ 1/2
+(:S‘—> aﬁafafﬁa:l- “4)

1

H,, corresponds to the Hamiltonian which would
result from (1) if a linear Primakoff type of transforma-
tion had been carried out. H.,, gives the spin-spin
interaction terms arising from the additional terms in
the Maleev transformations. The Hamiltonian can be
cast into the k representation as

H,=const+H"+Hs,
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where
Hy =§k: [B1(0)axtaic+B2(0)Bx B
T AR axB oyt A(—KaiBet], (5)
H, o= k%k LF (k) oy Py 05"
- FF1(k)ax B Bica Bier+ et
+Fa(k—ki —ke)atassoisBi1a-12],  (6)

and
B1(0)=,U,B+52(J0+A0) 3
By(0)= —uB+S1(Jo+40),
Ax= (5152)1/2-71{, (7)
Fk)= —(Jx+A4x)/N,
Fi(k)= —(S1/S2)'/2T/2N
Fo(k)= —(S2/S)Y%)/2N
with

ar=N"12Y" ayets,
f

Ju= X T e,
f=g

etc. (8)

We will define

Y= Z etk (tf—fg)
/=g

for subsequent use. In the above, sums over k are over
the first Brillouin zone. This completes the description
of the spin subsystem. Now we shall consider the phonon
field and its interaction with the spin subsystem.

B. Spin-Phonon Interaction

We assume that the two sublattices, each of V atoms,
can be regarded as a harmonic lattice of 2V atoms
giving rise to a phonon subsystem,

Hyn= Z wq(bquq""%) )

q

(9a)

where ¢=(q,)\), ¢ and X being the phonon wave vector
and polarization index, respectively, w, is the frequency
of acoustic vibrations of wave vector q and polarization
\; b,f, b, are the associated phonon creation and
annihilation operators.

The interaction of the phonon subsystem with the
spin subsystem is obtained in the usual way by expand-
ing in power series the displacements of the atoms from
their equilibrium positions and retaining only the linear
terms in the expansion; the displacements ér; (or dr)
are assumed to be small and are expressed in terms
of b, and b, by

sr=N"12%" Y(q)e'1*4,,
q

Y(¢) =e,(4Mw,)~"?,
A, =by+b_,f,

(9b)
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M is the mass of an atom in the crystal, which con-
tains 2V atoms in all. e, is the unit vector defining the
polarization of the mode ¢.

In deriving the spin-phonon interaction Hamiltonian,
we shall retain the terms arising from the #H,, part,
Eq. (3), of the total Hamiltonian and discard the con-
tributions from the scattering terms in Hpm,, Eq. (4).

The parameters of the displaced lattice are given by

J1d =T t%- (b17—01,),

10
Az = Az 2" (61,—01,), (10)
with
dJ ¢, A 54
- dry - ar, ’

and similarly for &”.

For convenience we define &’=4+4". In the above
we have used the fact that Jy,, 4, are translationally
invariant.

On using the simplification

(S1—asay)Bi B — (S*)BxBi
—(S1—aylay)(S2—B,"8,) — (S1*)B,"B,
—{S¥*)aa;+const,

we finally obtain, for the spin-phonon interaction,
H a—ﬁ=:4: LW a(@)axsq'axd 4
’ +We(—)B-acta) B-xA—g
FW as(l K+ Qoo 18174
FWag* (K k+Q)on 8 x4-4].  (11)
The coupling terms occurring in (11) are given by

W a(q)= Y(q) - [iqz1+mod yo JN 712,

Ws(q)=Y(g)-[—iqzat-md o, JN7V2, (12
W as(k]) = (S152)12Y(q) - [ e+ Ay JNV V2,
where
1= .UB+m2(J0+A o) ,
Ju=kJ/1—Vy, l=k+q (13)
Ya=ve—n, m=(Sr), me={(S).
The coupling constants Wa(g), Wps(g), and

W as(l,k+q) go to zero as ¢ tends to zero. The non-
diagonal interaction W s is quite important as k— 0 in
the sense that |IW.s|2/|Wea||Ws| tends to unity as k
goes to zero.

Finally, we obtain for the total Hamiltonian of the

system,
H=H\+Hs s+ Hun+Hsp, (14)

where H® is given in Eq. (5), Hss in Eq. (6), Hpn in
Eq. (9), and H,.p in Eq. (12). Experimental data'? on

10T, G. Phillips and H. M. Rosenberg, Rept. Progr. Phys. 29,
285 (1966).



1 SPIN-SPIN AND SPIN-PHONON INTERACTIONS

antiferromagnetic insulating crystals indicate that .
is usually more important than H._,.

3. DYSON’S EQUATION FOR
GREEN’S FUNCTIONS

Most of the studies on spin-wave theory using
Green’s functions have been devoted to obtaining
better decoupling approximations in order to obtain
improvements on the random-phase approximation
(RPA). In this study we follow a different approach in
that we shall develop the expressions for the Green’s
functions in the form of a Dyson equation and then
obtain an expression for the polarization operator of
the system. This method enables us to study the
dynamical effects in the system in a direct manner.

The Green’s functions which we shall use are the
double-time retarded and time-advanced Green’s
functions defined by Zubarev.

The Fourier components of the Green’s functions

are defined by
1 pt=

(A4@®,B(W)))= o

T J -

(4,B))ue= " dw,

and the subscript w in ((4,B)),, will often be suppressed.
We define the following symbols:

ax
o= T> o= (atBT),

—k

()lkjr
@k=( > Bt = (e Bu) (15)

_x
(1473

&k=< ) y k= (et BiT),
Bx

The operators are in the Heisenberg representation
and their time arguments have been suppressed for
convenience.

In the following we indicate vectors with four com-
ponents and 4X4 matrices by a bar over the symbol.
Vectors with two components and 2)X2 matrices will
be denoted in italic. This convention is indicated in
Eqgs. (15) and (16).

Further, we shall use the notation

)

where A and B are 2X2 matrices and 0 is the null
matrix.

The Fourier component of the Green’s function
G (k,w)= ((@x,ax')) satisfies the equation

oG l)= I+ (@ 1,a0). (16)

By considering the equation of motion of G(k,t—t)
with respect to ¢, for the Hamiltonian given in (14), it
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is easily established using Eq. (16) that the Fourier
component G(k,w) is given by

[Go (k) TG (kyw) = I+ ((F (K)ot (k) )y, (172)
where T isrthe 4X4 unit matrix. Further,
G’ (kw) =[G’ (k,w) : Go’(k, —w)],
d(k)o=Lo(k), ¢'(k),I",

where the superscript 7" indicates transposition to yield
a column vector, with

(17b)

w—5B:1(0) —A4A(-k)
—AK) —w—32(0)> ’
¢(k)q =Z W(k:k_ q)“k~qA a)

(Gt =(

where

W)
wik—o=( "

Wdﬁ(k - qak))
Wag*(k,k—q) '

Ws(q)

¢’(k) 4 is the transpose of ¢'(k),, and is a column vector.
The terms in ¢(k), arise from the spin-phonon inter-
action Hamiltonian.

The terms arising from the spin-wave scattering
processes are given as follows.

P (K)o = [F (K) sy F () ey 17, (17¢)
with
F() ke = Fo(k) ket F1(K) spie+ Fa (k) cqies
F' () x100 = Fo! () i3 " +F (k) ey
B Tﬁ— 1
Filla= 3 Flla—k( "),
kiks akl‘rakzﬁ——ﬁ
F1(k)B_1"8-x,"8-
Fi(ia= 2 ( 1085w )
kiks Fz(—k)aklfalakz
Fo(—k B
F2(k)k1k2= Z ( 2( l)alak “ > )
kik2 F1(k1)aklfﬂ—1m—sz
where I=k+k;—k,. Finally, we have
Fa(—1)B g0’
Fo(Kea=2 ¥ ( D “) (17d)
kika \ F1(1)B_, B-xsnt

The matrix Green’s function ((F (k)i & ()@’ ))
occurs in Eq. (17) and is as yet unknown. Taking the
equations of motion of the latter with respect to the
time argument associated with @.f, we have the follow-
ing result for the Fourier component:

<<p(k)klk2+¢;(k)Q;&kT»GY(’O_l(]_f:w)
= (F ()t (k) " ] X)wrr
+«F(k)klkz_l_q;(k)q:F,(k)kl’kz’T+‘5(k)q’>> ’

where

(18a)

X=(X_:X") (18b)
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and X is the anti-unit matrix, viz.,

o)

The commutator on the right-hand side of (18a) can be
written as ((F (k)x k@' | X) as the phonon term gives

(18¢)

K(k)=(K(k):K(k)),

Kio-x

ki
where
Ny *= <ak1Tak1> ) nklﬁz <Bk1fﬁk1> )

Combining Egs. (17) and (18) we obtain the equation
for the Green’s functions in the form of a Dyson
equation by the following manipulation:

G (k,w)=G"(k,w)+ G (k,w)7o(k,w)G(kw) (21a)

ﬁo(k,w) = Po(k;w)/[1+ Goo(k,w)Po(k,w)] ’ (2 lb)
where

p (k) =K (_k)—I—P (kw),
P(lw)= (I (lf)klk2+¢->(k) o
Fot (B iy iy +F3(K) iy 67 (k) o)) . (21¢)

The quantity given in Eq. (21b), #y(k,w), is the polariza-
tion operator defined in terms of G®(kw). Now the
problem is reduced to that of obtaining an expression
for #o(k,w) in an adequate approximation. The zeroth
Green’s function G°(k,w) occurring in the polarization
operator is the Green’s function corresponding to the
Hamiltonian H° which is a quadratic form in the boson
operators oy and Bx. The polarization operator can be
developed in terms of an improved zero-order set of
Green’s functions G° which correspond to the “equiva-
lent Hamiltonian” to be discussed in the next section.
However, if the equivalent Hamiltonian is used as the
zeroth Hamiltonian, the polarization operator depends
not only on G° but on its inverse as well. This is con-
sidered in Appendix A.

4. RENORMALIZED ZEROTH-ORDER
APPROXIMATION

Before proceeding to an evaluation of the polarization
operator in detail, we will show how the zeroth-order
Hamiltonian H,% Egq. (5), can be replaced by an im-
proved form, H° which takes into account all the static
effects arising from the scattering processes described
by the Maleev terms, given in Eq. (6). The new zeroth-
order Green’s functions, denoted by G°(k,w), have
temperature-dependent poles in contrast to those of
G (kyw).

To obtain a first approximation to_the polarization
operator 7o(k,w) we note that Go°(k,w)P°(k,w) occurring

Fo(O)%klﬁ-l-ZFz( —lﬁ)%kl
2F o (k) “+ F (k—ky)my, t
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no significant contribution except when phonon wave
vector q becomes zero; but at this limit spin-phonon
coupling terms occurring in ¢(k), vanish.

We let _ B
K (k)= {[F ()@’ 1. X). (19)
Then it is easily proven that
2F1(k)nk1"+F(k—k1)%k1
) , 20)
F(O)nkI“—I—ZFl(kl)nle

M= By, iy’ = (i 'Bs, ") .

in Eq. (21b) is small in comparison with unity; if the
denominator of (21b) is nonzero, we let

o(kyw) = PO(l,w)[1— G0 (k,w) PO(kyw)+ - - - .

Thus we take the approximation

ﬁo(kjw) = Po(k’w) (228')
when Eq. (21a) can be written as
L@ (k,w) —K (k) = P(k,w) JG(kw)=1. (22b)
Thus we let
(@) (kyw) = (Go") " (k,w) —K (k). (23)
Then it is easily established that
(@) (kw) = [(Go")(k,w) : (Go*) "'k, —w)]  (24a)
and
w—Eu(O) —Eu(k)
(@10 =( ), ew
—Ean(k) —w—E(0)
where
1 S’2 1/2
Eu(0)=uB—maJ——2 ]k1<——> Mg,
N r1 1
Snvz 1
Eq5(k) =M2Jk<—“> —— 2 et My,
S2 N &
(25)

Sa? 1
Ex(k) =m1]k(~> — =2 et
S1 N x

1 Sl 1/2
E22(0) = —MB+WL1]0'— _— Z sz("—> nle .
N = 2
Equation (24) corresponds to an equivalent Hamiltonian
H=const+Y_ [E1(0)axtax+ Eia(k)ax Bkt
k
+ E2(k)axfB—x+ E22(0)Bx B |,

and defines the renormalized zeroth-order approxima-
tion (RZOA).

(26)
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We now discuss the RZOA in detail. The poles of the
Green’s function (°(k,w) given in Eq. (24) are given by
the solutions of

[o—Ex(k) JLwt Ex(k) ]

X[w—Es(k) Lo+ Ei(k)]=0, (27a)
where
Ey(k)= Ex+Qo, Ez(k)=Ex—Qo, (27b)
with
Qo=3[En(0)—E(0)], (270)

Ex*= [ E11(0)+ E22(0) ]*— E1o(k) Ex(k) .

We give below the full expressions for Qp and Ex:

Qo" “—]o'(m1+m2)

S1 Sa\ 1/2
+— Z]kl[( ) —<_'> ]ﬂm‘l‘#B, (28&)
N 1 Sz S1

(Ex)?= {%J o (my—ms)
S, S\ 172 2
=G +G) I
2N ki S St
S, S\ 172
+J&2mama+ [( > M1—(~—> mZ:I
S1 S

1 2
X2 J k—klﬂkl"(" 2T k—kﬂ’ka) , (28b)
ki N r

where we have used
Ji' =T+ Ax
and taken (cf. Eq. 20)

ne=mny. (28c)

From (28a) we note that Q, is smaller than E since,
for an antiferromagnet, 7, and 7, have opposite signs.
Thus the poles at w= Ei(k), w= Es(k) gives the (posi-
tive) excitation energies of the system. The other two
roots of (27b) are rejected.

It is interesting to compare these results with those
of the simple RPAS% and the CD scheme.®

In the case of RPA, we have

Qo(RPA) = —3J¢ (m1+ms)+uB,
Ek2(RPA) = [%]0’(M1—M2):|2+Jk27ﬂ1m2 ,
and these are the leading terms of Eq. (28).

In treating antiferromagnetism by Callen’s method,
the decoupling to be used can be written as

{SASTHS N =(SAUSHSr ™))
—ai(SSHUSHS 7)),

{SSHS )= (S )(SrHSrN)
—a2<Sf—Sa+><<Sﬂ+;Sf’—>> ’
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where a3 and a3 are the CD parameters. In choosing a;
(and @) according to the physical criteria given by
Callen,! some ambiguity arises in that there are two
possible choices for a; and similarly for as. Anderson
and Callen® and Lee and Liu,” have treated the S1=.S,
antiferromagnet and found that one of the possible
choices leads to unsatisfactory results. For the more
general case S15%S;, treated here, if the results of CD
are to agree with Eq. (28), it is found necessary that
a1 and ap be chosen such that

1= —(Sf)/z.S'ng, = —-<S_12>/251S2.

When S;=.S, this is indeed the choice made by
Anderson and Callen.® The results obtainable from
Callen’s theory for the present system are

Qu(CD) = 1Jo’(1n1+7n2)+ me

SNYZmy  ma/Se\ 12
()24 Y oo,
S2 S1 o Sa\Sy

1
Z]kl
k1

L

SANY2my  ma/So\ 12
1G) 556) bl
So/  S1 S:\S:

J S2 112M1M2
+Jk2m1m2_ A——I:( )

Ek2(CD) = {%JQI(MI—mz) it

S1 S

+(§>1/2 mﬂnz:l S Ty
Sg Sl k1
mime

1 2
(— Z ]k——kxnlu) . (29)
Slsg N &

At sufficiently low temperatures my/Si=1,
my/Se~ —1. Thus the expressions in (28) and (29)
become equivalent at small spin deviations. This
relationship between the results obtained from the ideal
spin-wave Hamiltonian and the results of the Callen-
decoupling approximation is easily established for the
Heisenberg ferromagnet as well. We note in particular
that the ground-state energy calculated with our RZOA
will be identical with that from Callen’s decoupling
approximation.

The various expectation values, viz., my, me, and 7y,
which occur in (28), can be easily evaluated through the
spectral representations of the Green’s functions. De-
fining 0=%kpT to be the product of the Boltzmann
constant and the absolute temperature, it is easily

1 1. B. Callen, Phys. Rev. 130, 890 (1963).
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established that

= {alou) = i[(—g +1> coth(é;(oﬁ>

k

(5 -1)(5)-2]

R ey

(Gl

Bl (30a)
=B x) = T
o5 a5
— Ex(k)
et = {outBs) = T

o (%))

where

Finally,
1

1
m1=51—-}: %ka, M2=—S2+"“Z1’Lkﬂ. (30b)
/ N x

A zeroth-order” approximation to these quantities

can be obtained by taking FE11(0)=B:(0), Eio(k)

=E21(k)=A(k), and Ezz(k)=B2(0), as in (ISC), and
then the matrix elements of the RZOA are obtained
from (25). In using Maleev’s transformation approach
to problems where S#4%, we note that, unlike in other
methods, the very simple relations given in (30b)
suffice to give the sublattice magnetizations.

5. EVALUATION OF POLARIZATION
OPERATOR

In evaluating the polarization operator, we shall use
the equivalent Hamiltonian #° of the RZOA to describe
the spin subsystems. H,, will describesthe phonon
subsystem. This zeroth-order evaluation of the polari-
zation operator will be denoted by a superscript zero,
viz., P°(k,w). Thus for the total Hamiltonian of the
system, we use the effective Hamiltonian

Het=H+Hyn, (31)
rather than (14).
Further, in evaluating P%(kw), we shall carry out
the discussion entirely in terms of P°(k,w), since the
other component of P°(k,w) is such that

P(kyw) = [P(k,w): POk, —)]. (32)
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It is convenient to cast H° into diagonal form using
a Bogoliubov-Valantin transformation. Thus the
operators ay,ax’,Bx,8-x" are expressed in terms of the
quasiparticle operators vy1,vs and their conjugates by

(0. o9

where Cy is the canonical transformation matrix. The
elements of Cy are easily determined to be given by

w?=(R+Ex)/2Ex, nl=(R—Ex)/2E.. (34)

The symbols R and Ei have already been defined in
Egs. (30) and (27).
H s is now given by

Hest=3_ [E1(k)y1t(k)y1(k) ,
k
+ Ea(k)val (k) v2(k) ]+20 webelbe.  (35)
q
An estimate of the importance of 7, in comparison

to uy is of interest. If the surd in the expression for Ey is
expanded and the first term is retained, we have

v/ =/ (1),
Ey2En S1S2  cos(k-b)
x= = ,
(2R)?  (S1+S2)? (1+4/7)*
ti—1,=b, Jsp=J, Ajp=4, AL,

with

where only nearest-neighbor sums are taken. It is
evident that when S1~.S,, the two amplitudes #; and v
are of similar magnitude, especially at k close to zero,
w2/ m2~%. In Kashcheev’s? treatment of the anti-
ferromagnet, he seems to have ignored important non-
diagonal terms involving v, amplitudes.

Using the RZOA Green’s function (°(k,w), Eq. (23b)
can be rewritten as

[G(kyw) —PO(k,w) 16 (k) =1,

where we have already made the approximation given
in Eq. (23a) for the polarization operator. From
Eq. (22a) we have

Po(kw) = (F (W) irtG(K) .
B ()i Fo(B) ey + 6 (k) )0

It is evident that Po(k,w) could be written as
Po(k:w)ZPO(k:w)s~s+Po(k;‘*’)s—p:

(36)

with
Po(k;w)s-sz «F(k)lqkzy FOT(k)k1’k2'+ﬁ3(k)k1’kz’»0’
P(k,w)sp={{B(k) o, $7(K)))°-

Thus the contribution to the polarization operator
from the spin-spin scattering process can be evaluated
separately from that due to the phonon field.

@37
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The detailed evaluation of the expressions for the
polarization operator is given in Appendix B. In the
following we shall outline the approach used therein.

_ Using the canonical transformation of Eq. (33),
Po(kw) could be expressed in terms of the Green’s
functions defined below:

{(o:(k), o' (ki)
<<‘71'L1'(ki); o'rL(ki/)>> y = 1;2;3 (38)

and simpler forms like

{or(kd, 71" ())),

where

o1=01(k;) = o1(ks, ko, ) = y1(1) 2" (—ko)yo(—ky),
oo=0a(ks) = ool ko)) = o (= D' (—kao)v2(—ki1), (39)
o3=03(k;) = os(ky,ke,]) = vi(D)v1(ke)v2(—ki),

with 1=k+k1—k2.

Given any expression, e.g., o(1,2,k;), which depends
on the magnon branch numbers 1 and 2 and the wave
vectors k;, the expression (2, 1, —k;) will be called a
lattice dual and this is indicated by a superscript L, as
in ¢Z(1,2,k;), for example.

The six Green’s functions defined in Eq. (39) are
easily evaluated using the effective Hamiltonian of
Eq. (35). Expressions for these are given in Eq. (B4) of
Appendix B. The Green’s functions {(s,,0,1)) and their
lattice-dual forms describe three different physical
processes and their conjugate processes. For example,
the processes described by {{o1,01")) involves the scat-
tering of a magnon of a given type into two others
belonging to the two spin-wave branches. The reverse
process is the fusion of two magnons of types 1 and 2
into a single magnon. A crude examination of the proba-
bility amplitudes associated with the three processes
indicates that for small wave vectors these are of
comparable importance.

In the treatment by Kashcheev,? where a macroscopic
Hamiltonian has been used, an expression for the spin-
spin polarization operator has been given in his
Eqg. (AS). Unlike his energy denominators, the energy
denominators appearing in Eqgs. (B4) of this work are
temperature-dependent. The factors involving the
magnon and phonon occupation numbers obtained by
us are the same as those of Kashcheev. An adequate
discussion of the terms occurring in P(k,w)s.s is possible
only if suitable numerical computations are carried out.
This will be the subject of a later publication.

The spin-phonon part of the polarization operator
can be expressed in terms of the matrix Green’s function

I(k—q,q.0) = <<(7;1((11(__ :;j;) ’

[yt (k—q) Am(k—q)]>> . (40)
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This is evaluated using the Hamiltonian
H®=HetHpn,

whereby both parts of the polarization operator, viz.,
P(k,w)s.s and P(k,w)s, are evaluated self-consistently to
the same order of accuracy. The Green’s function (40),
evaluated to this order of accuracy, is denoted by
I(k—q,q,0) and is diagonal, viz.,

1/142mO+N
C1’(k—q,q,0) = —(——L—‘i

2\w—E(k—q) —w,
Nq—1—2nk_q<1>>
w—Ek—q+w,/ (41)

r120(k_ (M;w) =0.

The details of the derivation of the expressions for
I'(k—q,qw), and also the higher-order result
I'Y(k—q,q,w) are described in Appendix B. In (41),
N, denotes the ¢ number (4,74,).

The expressions given for the spin-phonon contribu-
tion to the polarization operator given by us may be com-
pared with those of Kashcheev [Eq. (A6)7] where our
energy denominators are temperature-independent.
Further, since the nondiagonal interactions have been
consistently taken into account, the numerators in our
expressions carry the magnon and phonon occupation
numbers in a different manner. As in the case of the
spin-spin interaction, a proper analysis of P(k,w)sp
needs the support of numerical computation.

Equations (B4), (B5), and (B13) of Appendix B give
the expressions for P(k,w).s and P(kw)s, to order
Po(k,w). Thus the first approximation to G(k,w),
denoted by G®(k,w), is given by

G (k) = (o)) = [0+ Esa(k,w) )/ D(kyw)
G12 D (k,w) = ({ax,8-x))= — E12(k,w)/D(k,w)
Go1 @ (kyw) = ({B-x' ")y = — E1a(k,w)/D(k,w)
Gar @ (k) = (B Bi)) = [—w+ Eni(k) )/ D(k,w) ,
where

E.(kw) = Ei(k)+P;0(kw)

D(kyw) = [&— E1u(k,w) Jlw+ Ez(kw) ]
+ E12(k,w) E21(k;w) .

(42)

6. COMPLEX SUSCEPTIBILITY

In order to study the line shape associated with the
absorption of energy from an alternating field, we shall
derive an expression for the frequency-dependent
susceptibility X(w), of the system. We assume that a
weak external magnetic field of frequency w, linearly
polarized and applied in the xy plane, is present in
addition to the static field B, which, as before, defines
the z direction. Then it can be shown that X(w) is
proportional to the Fourier component of a suitable
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retarded Green’s function, viz.,

X8 (w) = —2x{({M*,M*)),, r,s=x,7y,0orz (43a)

where M™ is the operator of the projection of the
magnetic moment in the 7 direction. We thus have

M=#S’=u(§ Sy+2257)- (43b)

Expressing 57 in terms of the operators ax, B, it is
easily proven that

(52,57 =((S%S"))u"
=§ I:f“(k,w)-'—f“(——k, _w):h’k ’ (43C)

with
Ve=Y—x= D e /o)
f—g

as before. The superscript # indicates expressions for the
undisplaced lattice, i.e., in the absence of the phonon
field. The expression fi*(w) is given by

J(kw) =m1[G11<1)(k,w)+<—j—2>1I2G12(l)(k,w):[

1

Sl 1/2
——mzl:Gzz(l)(k,w)-l-(S—) Gmw(k,w)]. (14)

2

In deriving (44) we have decoupled the Green’s func-
tions arising from the Maleev terms in the following
manner. For example,

((ontas 0y a1 ) = 271, (a0 1))

where we have used the fact that {axo i) is zero. Also,
we note that in (44) we have used the Green’s functions
G®(k,w) of the first approximation.

Susceptibility in the presence of the phonon field. As
the Green’s functions have been evaluated with the
effect of the phonon field taken into account, self-
consistency demands that the susceptibility itself be
calculated to the same accuracy. If (43b) is cast into the
momentum representation and the linear terms in the
displacements of the lattice vectors are retained, we
obtain

<<SI7Sx>> =zk: I:f(kr%w)—'_f(_k: —q _w)}yk . (453)

If we define

Q=Q(k—q,q,0) = (i, T~ A ) —((¥x—ad o 7i")) ,
then f(k,q,w) can be written as f(k,q,w)= f(kw)+:
2 SN ()Lt (kK Qi
YN IO T,

i=12, j=1,2
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where
k'=k—q,
tll(k:l) = (511/2’uk+521/21)1)(311/2Wk+51”2u1) ,
tl?(kyl) = (Slll2uk+S21/2‘vk) (S2ll2%1+511/27)1) .

ly1 is obtained from #s by the interchange <9,
and £y from #, by S1¢=>.S.

All the Green’s functions occurring in (45) have been
evaluated in the first approximation. It will be seen
subsequently that a self-consistent treatment to order
1/N will require Q(k,k—q) in the first approximation
as in Eq. (B14), and I'(k,k—q) to zero order as in
Eq. (B12).

(45h)

A. Imaginary Part of x (») in RZOA

To begin with we shall examine the imaginary part
of the susceptibility tensor in the RZOA, using Eqgs. (43)
and (44). In this approximation the imaginary part
consists of a set of d-function-like peaks, and when
suitable limits are taken we easily recover the results of
classical theory and those of, for example, P’u Fu-Cho.?

From (43), we have

ImX**(w) = —27u? Im % e[ fe(k,w)+ =k, —w)].

For simplicity, if we take the case where the two sub-
lattices are equivalent, with S1=S,, we obtain, using
the notation of Eq. (30),

(—im/2Ex){[(m1—ma) R+ (my+ms) Ex
+m1E12(k) -—m2E21(k)]6(w —E1)
[ (m1—mz) R— (m1+ms) Exe
+m1E12(k) ——m2E21(k):'5 (w ~ZZz) } (46)

for the imaginary part of [ f*(kw)+ f“(—k, —w)].

Equation (46) may be compared with Egs. (39) and
(42) of P’u Fu-Cho and is seen to be equivalent to his
results, except that our excitation energies and sub-
lattice magnetizations include the correction terms
which are not contained in P’u Fu-Cho’s RPA result.
The coefficients of the & functions give the relative
intensities of the two bands.

B. Line Shape

Since the RZOA does not contain any lifetime
effects, the spectrum is a set of é-function-like peaks.
An expression for the line shape can be obtained in
terms of the polarization operator previously derived;
in the following we shall examine the broadening effects
arising from spin-spin interactions in the absence of the
phonon field, and then in the presence of the phonons
as well.

Broadening due to spin-spin interactions. To study
the line shape arising from spin-spin interactions, we
use Eq. (44) containing the Green’s functions in the
first approximation and including only the spin-spin
part of the polarization operator, P(k,w)s.s.
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We use the following definitions:
Ri(w) =3(EutEz) Re[Pu(kw)+Paa(kw)],
Qx(w) = (E11— Ez2)+Re[P11(k,w) — Pas(k,w) ],
9 (ko) =Im{w[ P11(k,w) — Pao(k,w)]
+ E11Pos(kyw) + EgoP1i(k,w)
— Eyp(k)Par(k,0) — Ear(k) Pra(k,0)}
S\ /2
o(k,Eij) = mll:E22 — <§> Em(k):l

1

e () ]

D(kw) = {[&—Qx(w) P—[Ex’+Ru(w) ]}
+'92(k:w) .

The imaginary part of P;; involves sums of § functions
while the real part involves principal-value integrals.
Expressions for P;; in the approximation P;;° appear in
Appendix B. If terms involving products of principal-
value integrals and similar small quantities be neglected,
it is possible to express the imaginary part of X(w) in
the following manner:

ImX**(w) = —2mu* § Vil Im[ f(kw)+f*(—k, —w) 1}
(48)

(47)

and
Imf(kyw) = [o (K, Ei) + (ma-Fms)w ]9 (kw)/ D (kyw)
Hlo—Ei(k) J[o—Esx(k)]
X [Tme(k,P:;) 1/ D (kyw).

The expression for D(kw) given in (47) can be
conveniently rewritten as

D(kyw) = {[0—(w) Lotds( =)+ 9*(kw), (49)

where we let

61(w) = Qx(w)+ Ex(w)
Ga(w) = —Qu(—w)+ Ex(—w),
Ei*(w)= Ex®+ Ri(w) .

We note that D(k,w)™" is strongly peaked around & (w),
while D(—k, —w)™! is strongly peaked around &s(w).
If those are considered to be slowly varying functions
of w, then @; and @ are the excitation energies inclusive
of the shift due to the scattering processes. The ex-

pression for the shifts are immediately available from
(49b) and (27c). Thus, for example,

&1(w) =E(k)+Re[P11(k,w) —Pai(k,w) ]
(E11+E22

(49Db)

) Re[Py1(k,w) +-Poo(kyw) ]+ - - .

k
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Equation (48) can be rewritten as
Imf(kw)= £(kw)+ G(kw),
where £(k,w) is the Lorentzian-like term,
£(k,w) = (k, Ey)y (kw)/D(kw)
and @(k,w) is an asymmetric term, viz.,

@ (k,w) = {(m1+ms)wf (k,w) .
+[w—Ei(k) Lo+ E2(k) ] Tm¢ (k,P;) } /D (kyw) .
Then

Tm[x**(k,w) ]=—27u Y vx
k

X[ekw)+£k, —w)+ alkw)+ alk, —w)]. (50)

Thus the spectrum may be thought of as consisting
of two Lorentzian lines peaking at &; and @, onto
which are superimposed two asymmetric lines, peaking
at @; and @.. In the region between the two peaks, viz.,
1<w< @y, the term [w— Ey(k) JLw+ E,(k)] is negative,
and hence the effect of the asymmetric term is to
steepen the inside profiles of the two absorption lines.
The function ¢(k,E;;) is approximately 2|m|
X[Eu—Es(k)], where m is the average sublattice
magnetization; hence, if the offdiagonal contributions
are large enough, the relative weight of the Lorentzian
lines becomes correspondingly less. Thus it is possible
that the negative contribution from the asymmetric
terms may just overweigh those of £(w)+ £(—w) for
some w such that &1<w<&s, if the matrix elements
E;; and P;; are favorable. Thus there could be an
apparent “‘emissive” region between the two absorption
peaks &; and @,.

When the two sublattices become identical, with the
external magnetic field tending to zero, the two peaks
collapse into a single Lorentzian shape centered at the
degenerate excitation energy.

Broadening in the presence of the phonon field. When
the coupling with the phonons is of importance, we have
to take into account all the terms which occur in (45)
and also use the full polarization operator, inclusive of
the contributions from the phonon field.

We write (45) as

fls,g,0)= fllw)+ f O (L w)+ fP(kLw), (51)

where f®(k,w) is the term involving the Green’s
functions Q;(l,g,w), while f®(k,w) involves the Green’s
functions I'(l,¢,w), with I=k+q.

Suppressing the arguments 1, ¢, and w for brevity, it
is easily established, from Egs. (45) and (B9), that

Q11=T'1®(XuyutXway)iN12Y(g),

. 52a,
Q1= I’ (Xuryar+-Xaovee)iN-12Y(g),  etc., (522)
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where y=y(kw)=((y(k),y'(k))) and
Xn: Xu(k,k_q) = 2[(](ukulzl+ vk'yIZZ)

+(S1/S2) ¥ (vean+ ) T ]
X1o=X12(k,k —q) = 2[ g(vxt1 21+ w01 Z5)

+ (51/52) 1/2(%k741+'0k'01)f1k] .
The expression for Qs, and Q4 are obtained from (52a)
by interchanging suffix 1 with 2. The elements X,; and

Xs1 are obtained from (52b) by interchanging # ampli-
tudes with » amplitudes. Then, if we define the matrix

Ce=Cx(k,])

[:tnuk“tm’k 0 ]I:Xn X12:||:%k —vk]
0 t1otx — 200k AL Xa1  Xgo L vy Uy

and the matrix C® whose elements are obtained from
C* by interchanging # amplitudes with » amplitudes,
it is easily shown that

(52b)

k—q) 72
M(FIIO,FM%

fhg) = f(kw) —} & ——

q 1

{e(g)re(e)-6-a1)] @
u K — ___q .

Gy, Ga 2%

This expression differs from that of the system without
the phonon field not only in the presence of the term
involving T'%(k,l,w), but also in that the full polarization
operator inclusive of the phonon part has to be used.
This does not change the qualitative form of the
contribution to the line shape arising from f(k,w), the
first term on the right-hand side of (53). If products of
principal-value integrals and é-function-like terms be
neglected, the contribution from the second and third
terms on the right-hand side of (51) can be expressed as

(k—q)¥*(g)
N
XA{[0(u,w) — (k—q)t11]- ImT1,°(,g,00)
+[0(1’)w) - (k —g)tﬂ] : Imr?ZO(l,Q7w):] ]

Tn(f0-+7®) = =3

where

0(1,00) = [ (0 —Er) (w+ E3) (Cix*— C2")ew
4 C1y*Eao+ Cop¥E11—C12%Fo — Co1*Er2 /D (w) -
Also, '

ImI°(Lg,w) =3[ (1427 P+ N ) 8(w—Ei(l) —wy)

— (142D =N )é(w—Ei(D+wy)] (54a)
and
ImT2:°(l,g,0) =3[ (1 —211P — N ) 8(w+ Ez(l) —wy)

— (142 @D+ N ) 8(w+ Ex(D)+wg)].  (54b)

The full expression for the susceptibility will involve
the complementary terms with w replaced by —w,
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arising from f(—k, —I, —w). However, it is evident
from (54a) that the terms involving 11 and 4, will give
rise to a series of strong é-function-like peaks defined
by (54b). The broadening in these very sharp lines will
be manifest only in a higher-order theory. The terms
involving the denominator D(w) will lead to an asym-
metric contribution to the line shape, but, unlike
@ (k,w) which occurs in (50), the contribution will be
positive in the range @ <w<®, and will tend to
broaden out the line profiles which face each other,
owing to the formation of the bands between the two
main peaks. In the regions w<&;, and w> &, the
phonon side bands occur with much weaker intensity
than those between the two peaks, as may be ascertained
by a study of the sign of the contribution from the first
term on the right-hand side of (54).

7. CONCLUSION

The development of the Green’s function theory of
the Heisenberg antiferromagnet via a Dyson equation
has enabled us to achieve a systematic approach to the
study of interacting magnon fields. In spite of the
algebraic complexity of many of the results, useful
qualitative conclusions regarding the line shape could
be drawn and contact with established results could be
easily made. A more detailed study of many of the
results developed here needs the support of numerical
computation and these will be presented in a subsequent
study.

APPENDIX A

The non-Hermitian nature of the effective boson
Hamiltonian of Dyson leads to a Dyson equation having
a complicated structure if the zeroth-order Hamiltonian
is taken to include other terms than those occurring
in Hy©.

For example, instead of Eq. (17), we could have

GO(k,w) G (k,w)

“y [F(klo_k2> F(klo—kz):l
S
+Z L o]

g lonn
<« )
Bk B-xBt]

I:Fz( —k1) 0
0 Fi(ky)

(Gl w
B-11B81cp Tty T

+27

ki, kg
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where the prime on the summations indicates that
ki#k, and k:5%k, and l=k-+k;—k.. Further, we have

w—'Eu(O)

—Eqz(k)
o ] (A2)

Go —1=|:
( ) w—E22(0)
which is the same as G° of Eq. (24) and, unlike (G¢°)™?
of Eq. (18b), unsymmetrical in that FEi»5% Es; unless
the two sublattices are equivalent and the external
field is zero.

Differentiating (A2) with respect to the time argu-
ment of () occurring on the right, we have

(GY1G=I+P(GY) 7, (A3)
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equation, we write
G= G4 G°P(GYy
=G4G'nG,
when
n=P(G%,G*1/[I4+P(G%r]. (A4)

Thus the polarization operator will have the simple
form P/(I4PG% only if (G%7(G°)~'=1. This is not
the case, since (A2) is nonsymmetric except when
S1=.5, and the external field is zero.

APPENDIX B

The detailed derivation of the expressions for the
polarization operator are presented in this appendix.

The spin-spin contribution to P%(kw). Applying the
canonical transformation of Eq. (33) to P°(k,w)s.s, We

where the subscript 7' denotes the transpose of obtain
(G Po(kw)ss = {(x (k),x(k))), (Bla)
Thus, in casting (A3) into the form of a Dyson where
- ( )+ den (k)
Z Drua'r+Dr1)U'rLT)+d171( )+d2’YQT(
x(k)=§ , , (B1b)
1k2
Z (DruLU'rLT'I'DrvLO'r)+d2L71(k)+d1L'y2T(_k)
r=1
3
Z (DruIVrT"*‘DM,Ur)+d1’711(k)+d2,72(_k)
x'(k)=k2k o , (Blc)
1'ka’

Z (Dru,L("rT‘*—Dr vlLo'rT) +d2IL'YlT(k) +d1’L72( '—k)
r=1

where the notation of Eq. (39) has been used.

x’(k) is a row vector of two components although it is written as a column vector for convenience. As before,
the superscript L denotes the lattice-dual forms. D,, is obtained from D,, by interchanging all the # amplitudes
with the corresponding » amplitudes. d» and d’ are obtained from dy and dy’ by interchanging u; with v, for the
k mode only. The expressions for all these coefficients will not be given here since they are easily derived. We
display only the following examples:

D1y = Dyu(ki,ka,l) = — (1/N) {1ttty vieg01J 11"+ [ (S1/.S2) Y 2 wttiegr+ Viey111T 1, (S2/ S1) V2 ]y,

B2
di= dl(k,kl) Okykg= — (I/N){Jolukvkl+ Jk—kllvkukl)'l‘ [(SI/SZ) lIZkakka," ukukr’kx(SZ/Sl) 1/2]}7)1(1 ) ( )
where, as before, Ji'= Ji+Ay.
In (Bla) we had _
PO(k,w)s.s= [Pk ,0)s-s: POZ(k,0)s-s ]
and (B3)

PO(lw)es= (U (), (k))) -

From (B1b) and (Blc), it is evident that an evaluation of P(k,w)s.s involves the evaluation of Green’s functions
like {{o,0,7))° (r=1,2,3) and the conjugates of their lattice-dual forms. All other Green’s functions, e.g.,
(o ,0,1)), etc., which occur in (B3) are zero. We shall use k; to denote ki, ks, and 1. Then

(L4 +nk, D)1y =101 Py @
w—Ey(1) = Eo(—k1) +Eo(—ks)
2[(1+n1<2>+nk2(2))nk,(2) _nkz(z)nlu)]

—wtEo(—kq) —Ea(—1) —Eo(—ks)

((oa(ke),oa ()0 = B (B4a)

((o2(ks) 02t (k)))° = bicsuesr (B4b)
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2L(A+m D) (121D 10 P) 1, P, V]

(os(ka),ot(1)))° = bcixs

) (Bdc)

w—Eg( —k1) —E2(k2) _El(l)

where 7 V= (y1'(k)y1(k)) and similarly for 7, ®.

The conjugate lattice-dual forms, viz., ({(¢:*,0,%)) (r=1,2,3) are obtained from the above by interchanging 1
with 2, k; with —k;, w with —w, and changing the sign of the whole expression. Thus, noting that 7, =7_,®,

we have, by way of an illustration,

(o5t (ks) 055 (K)))0 = — Bk sr

2L Fm®) (1413 Oy D1y ]

—w—FE1(ki) — Es(—ks) — E1(—1)

Using these Green’s functions, matrix elements of

the polarization operator can be easily written down.
Thus, for example,

Pllo(k,w)s-s
= Z DruDTu,<<a'T;0'rT>>0+ Derrr’<<a'rLf70-rL>>o
+/(k)/[w—E®)]—f'k)/[—o—E(-k)],

with

(B5a)

f(k) = Z Z (Dludl’nkl(z)'{—nkl’(2)d1D1u,

kiks ki’ks’
+D2vd1’”k1(l) +"k1’ (l)dlD2v’+dldll) 61{11(231(1’!r:2’

+(D2olr 113 P 1110 Vd1D2,") Srpieadirr - (BSb)
and with a similar expression for f’(k), obtained by inter-
changing 1 with 2 and % with v. The f(k){[w—E(k) ]}
and f'(k){[—w—E(—k)]}™! terms are of the order
N—2 and are in the nature of a first-order perturbation
correction to the excitation energies given by the RZOA.
The true dynamical part of the polarization operator is
associated with the Green’s functions ({s,,0.")) and

{0/ 4,0,1)). They describe three different physical

processes and the corresponding conjugate processes.
The various probability factors are largest in the
neighborhood of small wave vectors and, on this basis,
a very crude assessment of the magnitudes of the D
coefficients can be given as

DluDlu’ = 4D2uD2ul = 4D3uD3u,
~di=~ dl' = [2N—l(]0+Jk)]2 ,

thus indicating that the three processes are of a similar

order of importance.
The spin-phonon contribution to the polarization
operator. In Eq. (27) we had

Po(k,w)sp = ((9(K) 6" (k) 7)) -

On applying the canonical transformation to ¢(k),,
we obtain

$(K) =2 Wlkk—q)Clk—q)viqd,.  (BO)

We define the following operators:

qubq"‘qu7 (k )A
YilK—(q)A,q
Ak— =~(k— =
(k—q,9)=v(k—q)4 [72* (q_k)A_qT] (B7a)
and (k—q)B
YU K—(q)D,q
B(k—gq,9)=v(k—q)XB,= , 7
(k—a,g)=1(k—0) [va(q——k)B_qT] B7h)

where X is the anti-unit matrix defined in (18). Further,

we let
T'(k—q,q,0)=((A(k—q,9),AT(k—q,9))). (B7c)

In order to evaluate Po(k—q,q)s.p, i€, {(6(k),
87(k) )", it is necessary to evaluate I'(k—gq,g,0) using
the Hamiltonian Hes;. However, for use in a subsequent
section, we directly evaluate I'¥(k—q,q,w), to achieve
an accuracy equivalent to the evaluation of G(k,w),
and recover I'’(k—q,q,w) en passant. Thus the Hamil-
tonian to be used is

H(l):Heff+Hs-p- (Bg)

When the canonical transformation, Eq. (33), is applied
to Hep, Eq. (11), it can be written in terms of v opera-
tors as follows:

Hyp= kZ [Wu(k,k+q)v:t(k+ Q)vi1(k)4,
.q

+Wao(k k+q)vot (—k—q)va(—k)4_,]
+kZ [Wie(kk+q)vif(k4-q)v2'(—k)4 q

+Wi* (kk+q)vi(k+q)ve(—k)4-.], (BI)

with I=k+q. The coupling factors W,;(k,k+q), etc.,
now contain the various #,9 amplitudes, W,, Wg, W 4,
and W ,*.

Taking the equations of motion of I'V(k—q,q,i—?'),
we have for the Fourier component I'¥(k—gq,q,w) the
following result:

GDo(k— q’w)—lr(l)(k_ (1»9;0’)
=N I+w((B(k—q,9), Af(k—q,q)))®
+2X Wk—q—q k—q)y(k—q—q)4,4,,
q

At(k—q,9)))?, (B10)
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where .
—Ej(k— 0
GDO(kﬂq,w)ﬂ:[w k—q) ]
0 —w—Eq(k—q)
and

N= (AquT)-

For the Green’s function ((B(k—q,q),Af(k—q,9)))
which occurs on the right-hand side of Eq. (B10), we
have the equation

[G o0k —4,) T (Bl —a,0), Al(k—,)))V
1 2@
=[ 0 14205
+ (XW(k—q—q' k—q)y(k—q—q)4¢By
L Tlk—a, Alk—g)®, (B1)

where X is the anti-unit matrix and T(k,k—q)x con-
tains higher-order Green’s functions like

(&) v1(k—a)y:'K'—q)y(k—q—q)4¢Bq,
yi'(k—q)4,h).

These higher-order Green’s functions can be de-
coupled in an obvious manner by using the averages

(Aedg)=Ngbg o in Eq. (B10),
(A ¢By)=0q¢¢

]—I_wqr(l)(k_ q,Q;w)

and
(' (k—q)v1(k'—q))=7mx—qbi,r  in Eq. (B11).
Then, substituting Eq. (B11) in (B10), we obtain

rw (k—q:%w) = Fo(k—q,(l;w>+ Fo(k_(b%w)
X W (I, k—q){(y(k),A"(k—q,9))), (B12a)

where the zeroth result T(k—q,q,w), Eq. (B12a), is a
diagonal matrix, having the elements

" | 11420 O4N,

'y —q,q,w ='_[ -

" 2l w— E(k—q) —w,
N—1—2my_g®

+ M]’
w—E(k—q)+w,d  (B12b)

I'’(k—q,q,0)=0.

The two elements I'z°(k—q,q,0) and I's°(k—q,q,0) are
obtained from the above by interchanging # with
n®, » with —w, and E; with E,. Finally, using (B6),
we have

Pllo(k;w)s-p
=3 | Wu(k—q,0)m—g+ou—qWia(k—q,0) | 2
q
X Fllo(k - q,f],w>
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+3 | Wu(k— q,0)ve—q+21—qWi2(k—q,9) | 2

X F22O(k— (I;Q;w) ’ (B 13&)

and, suppressing the k—q,g arguments in W(k—q,q),
we have :

P120(kyw)sp
=3 | (Wisthe—qF0iqW1z) (Wt g +oi_Was*) |
" X Tk — 0,4,0)
+§ [ (W 10— g+ 21— W12) (War*vie—q o Was*) |

XT2d(k—q,q,0). (B13b)
The other two elements are obtained by interchanging 1
with 2. These expressions may be compared with those
obtained by Kashcheev [Eq. (A6)] where he has three
energy denominators only. Our results contain four
energy denominators (two from each I' element) and,
in addition, the numerators carry the magnon and
phonon occupation numbers in a different manner,
although they still occur linearly.

Equations (B4), (BS), and (B13), givingiP(k,w)s-s
and P°(k,w)s, complete the evaluation of the polariza-
tion operator P(k,w).

Spin-phonon Greew’s functions in the first approxima-
tion. In the remainder of this appendix we proceed to
evaluate the Green’s functions ((A(k—gq,¢),A"(k—q,q))),
({(y(k),At(k—q,g))) in the first approximation.

In Eq. (B12a), the unknown Green’s function
{yk),Af(k—q,9))) is found to occur. Taking the
equations of motion of the latter with respect to the
right-hand time argument, we have, for its Fourier
component,

=(r(I)y" &)Wk k—q)T @ (k—q,g0), (B14)

where W' is the complex conjugate of the transpose
of W. Hence, from (B12a),
r®(k—q,gw)=r'k—gq,g,w)
+I'(k—q,9) Wk k—q){(y(k),x" (k)))
th(k:k_q)ro(k—q:%w) . (BIS)

The Green’s function ((y(k),y'(k)))®¥ is already
known in terms of G®(k,w) which has already been
determined. Thus we have

(&), 7" (K))) D= CH(k)G® (k,w) C (k) ,

Uk, —Ux
c—1=[ ] .
—Uk Uk

with



